Light and circadian regulation of clock components aids flexible responses to environmental signals
نویسندگان
چکیده
The circadian clock measures time across a 24 h period, increasing fitness by phasing biological processes to the most appropriate time of day. The interlocking feedback loop mechanism of the clock is conserved across species; however, the number of loops varies. Mathematical and computational analyses have suggested that loop complexity affects the overall flexibility of the oscillator, including its responses to entrainment signals. We used a discriminating experimental assay, at the transition between different photoperiods, in order to test this proposal in a minimal circadian network (in Ostreococcus tauri) and a more complex network (in Arabidopsis thaliana). Transcriptional and translational reporters in O. tauri primarily tracked dawn or dusk, whereas in A. thaliana, a wider range of responses were observed, consistent with its more flexible clock. Model analysis supported the requirement for this diversity of responses among the components of the more complex network. However, these and earlier data showed that the O. tauri network retains surprising flexibility, despite its simple circuit. We found that models constructed from experimental data can show flexibility either from multiple loops and/or from multiple light inputs. Our results suggest that O. tauri has adopted the latter strategy, possibly as a consequence of genomic reduction.
منابع مشابه
Modulation of environmental responses of plants by circadian clocks.
Circadian clocks are signalling networks that enhance an organism's relationship with the rhythmic environment. The plant circadian clock modulates a wide range of physiological and biochemical events, such as stomatal and organ movements, photosynthesis and induction of flowering. Environmental signals regulate the phase and period of the plant circadian clock, which results in an approximate ...
متن کاملCircadian clocks in the cnidaria: environmental entrainment, molecular regulation, and organismal outputs.
The circadian clock is a molecular network that translates predictable environmental signals, such as light levels, into organismal responses, including behavior and physiology. Regular oscillations of the molecular components of the clock enable individuals to anticipate regularly fluctuating environmental conditions. Cnidarians play important roles in benthic and pelagic marine environments a...
متن کاملCSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas
The green alga Chlamydomonas reinhardtii shows various light responses in behavior and physiology. One such photoresponse is the circadian clock, which can be reset by external light signals to entrain its oscillation to daily environmental cycles. In a previous report, we suggested that a light-induced degradation of the clock protein ROC15 is a trigger to reset the circadian clock in Chlamydo...
متن کاملBOTANICAL BRIEFING Phytochromes and Shade-avoidance Responses in Plants
Background and Aims The ability to detect and respond to the impending threat of shade can confer significant selective advantage to plants growing in natural communities. This Botanical Briefing highlights (a) the regulation of shade-avoidance responses by endogenous and exogenous factors and (b) current understanding of the molecular components involved in red to far-red ratio signal transduc...
متن کاملDecentralized circadian clocks process thermal and photoperiodic cues in specific tissues.
The circadian clock increases organisms' fitness by regulating physiological responses(1). In mammals, the circadian clock in the suprachiasmatic nucleus (SCN) governs daily behavioural rhythms(2). Similarly, in Arabidopsis, tissue-specific circadian clock functions have emerged, and the importance of the vasculature clock for photoperiodic flowering has been demonstrated(3-5). However, it rema...
متن کامل